NPWA water meets or exceeds all State and Federal Safe Drinking Water Act standards.

300 Forty Foot Road • Lansdale, PA 19446
Ph: 215-855-3617
This report is also available online at www.npwa.org

This report is being mailed to you as a requirement of the Federal Safe Drinking Water Act.

“A dedicated, professional workforce committed to providing the community with a safe, reliable, and economical water supply.”

ANNUAL DRINKING WATER QUALITY REPORT
SELLERSVILLE 2017
PWSID#1460034

INFORMATION ABOUT LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. North Penn Water Authority is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

INFORMATION ABOUT ARSENIC

While your drinking water meets EPA’s standard for arsenic, it does contain low levels of arsenic. EPA’s standard balances the current understanding of arsenic’s possible health effects against the costs of removing arsenic from drinking water.

CRYPTOSPORIDIUM AND GIARDIA

Cryptosporidium and Giardia are recalcitrant pathogens found in surface water throughout the U.S. Wastewater of our source water (Before treatment) at Fox Hill, Water (PFOS) indicated the presence of Cryptosporidium in 4 out of 12 samples collected. Giardia was detected in 7 out of 12 samples collected. PFOS treatment processes are designed to remove or inactivate Cryptosporidium and Giardia cysts with a high level of certainty. Current available test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immunocompromised people, infants and small children, and the elderly are at greater risk of developing life-threatening illness. NPWA encourages immunocompromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Cryptosporidium and Giardia must be exposed to very high doses to cause disease; such may be spread through means other than drinking water.

EDUCATIONAL INFORMATION

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

• Industrial contaminants, such as vinyl chloride, which may come from sewage treatment plants, paper mills, agricultural livestock operations and wildlife.
• Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, and oil and gas production, mining or farming.
• Pesticides and insecticides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential use.

Crypto, Giardia, and Cryptosporidium are chlorine-resistant in nature and require disinfection at higher concentrations than most other organisms. NPWA uses chlorine and ultra-violet light treatment processes to disinfect water. Cryptosporidium and Giardia cysts are commonly found in the environment and are highly resistant to chlorine. NPWA utilizes a combination of two disinfection processes to ensure that our water is disinfected to the required level.

• Cryptosporidium and Giardia must be exposed to very high doses to cause disease; such may be spread through means other than drinking water.

• If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. North Penn Water Authority is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

• While your drinking water meets EPA’s standard for arsenic, it does contain low levels of arsenic. EPA’s standard balances the current understanding of arsenic’s possible health effects against the costs of removing arsenic from drinking water.

• Cryptosporidium and Giardia are recalcitrant pathogens found in surface water throughout the U.S. Wastewater of our source water (Before treatment) at Fox Hill, Water (PFOS) indicated the presence of Cryptosporidium in 4 out of 12 samples collected. Giardia was detected in 7 out of 12 samples collected. PFOS treatment processes are designed to remove or inactivate Cryptosporidium and Giardia cysts with a high level of certainty. Current available test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immunocompromised people, infants and small children, and the elderly are at greater risk of developing life-threatening illness. NPWA encourages immunocompromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Cryptosporidium and Giardia must be exposed to very high doses to cause disease; such may be spread through means other than drinking water.

• Crypto, Giardia, and Cryptosporidium are chlorine-resistant in nature and require disinfection at higher concentrations than most other organisms. NPWA uses chlorine and ultra-violet light treatment processes to disinfect water. Cryptosporidium and Giardia cysts are commonly found in the environment and are highly resistant to chlorine. NPWA utilizes a combination of two disinfection processes to ensure that our water is disinfected to the required level.

• The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

• Contaminants that may be present in source water include:

 • Industrial contaminants, such as vinyl chloride, which may come from sewage treatment plants, paper mills, agricultural livestock operations and wildlife.
 • Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, and oil and gas production, mining or farming.
 • Pesticides and insecticides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential use.

• If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. North Penn Water Authority is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

• While your drinking water meets EPA’s standard for arsenic, it does contain low levels of arsenic. EPA’s standard balances the current understanding of arsenic’s possible health effects against the costs of removing arsenic from drinking water.

• Cryptosporidium and Giardia are recalcitrant pathogens found in surface water throughout the U.S. Wastewater of our source water (Before treatment) at Fox Hill, Water (PFOS) indicated the presence of Cryptosporidium in 4 out of 12 samples collected. Giardia was detected in 7 out of 12 samples collected. PFOS treatment processes are designed to remove or inactivate Cryptosporidium and Giardia cysts with a high level of certainty. Current available test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immunocompromised people, infants and small children, and the elderly are at greater risk of developing life-threatening illness. NPWA encourages immunocompromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Cryptosporidium and Giardia must be exposed to very high doses to cause disease; such may be spread through means other than drinking water.

PH: 215-855-3617 • www.npwa.org

PHONE: 215-855-3617 • www.npwa.org

NPWA water meets or exceeds all State and Federal Safe Drinking Water Act standards.

INFORMATION ABOUT LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. North Penn Water Authority is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

INFORMATION ABOUT ARSENIC

While your drinking water meets EPA’s standard for arsenic, it does contain low levels of arsenic. EPA’s standard balances the current understanding of arsenic’s possible health effects against the costs of removing arsenic from drinking water.

CRYPTOSPORIDIUM AND GIARDIA

Cryptosporidium and Giardia are recalcitrant pathogens found in surface water throughout the U.S. Wastewater of our source water (Before treatment) at Fox Hill, Water (PFOS) indicated the presence of Cryptosporidium in 4 out of 12 samples collected. Giardia was detected in 7 out of 12 samples collected. PFOS treatment processes are designed to remove or inactivate Cryptosporidium and Giardia cysts with a high level of certainty. Current available test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immunocompromised people, infants and small children, and the elderly are at greater risk of developing life-threatening illness. NPWA encourages immunocompromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Cryptosporidium and Giardia must be exposed to very high doses to cause disease; such may be spread through means other than drinking water.
Perfluorinated Compounds (PFCs)
- Perfluorooctanesulfonic acid (PFOS)
- Perfluorooctanoic acid (PFOA)
- Perfluorobutanesulfonic acid (PFBS)
- Perfluorohexanesulfonic acid (PFHxS)
- Perfluorohexanoic acid (PFhxA)
- Perfluoroundecanoic acid (PFUnA)
- Perfluorooctadecanoic acid (PFODA)

Inorganic Chemicals (IOCs)
- Antimony
- Mercury
- Cadmium
- Nickel
- Cyanide
- Selenium
- Fluoride
- Thallium

Synthetic Organic Chemicals (SOCs)
- Atrazine
- Pentachlorophenol
- Ethylbenzene
- Styrene
- Toluene
- trans-1,2-Dichloroethylene
- Chlorobenzene
- Vinyl Chloride
- Xylenes, total

HOW NPWA IS PROTECTING THE WATER YOU DRINK

Below is a list of parameters which NPWA monitored for in 2016 but DID NOT DETECT:

- 1,1,1-Trichloroethane
- 1,2-Dichloropropane
- Ethylbenzene
- 1,2-Dichlorobenzene
- Styrene
- Benzene
- Toluen
- Carbon tetrachloride
- trans-1,2-Dichloroethylene
- Chlorobenzene
- Vinyl Chloride
- Dichloromethane
- Xylenes, total

Forest Park is a state of the art water treatment facility that combines conventional treatment processes with advanced techniques, which include ozone disinfection and membrane filtration. Membrane filtration is a leading-edge technology capable of consistently producing very high quality water and ensures that the plant can safely meet the more stringent federal and state water quality regulations that will be required in the near future. The combination of traditional and innovative water treatment allows Forest Park to produce the safest, highest quality water possible. In 2016, for the 9th consecutive year, Forest Park Water received the prestigious Area Wide Optimization Program (AWOP) Award presented by the PA DEP. The award recognizes outstanding efforts toward optimizing turbidity removal performance. AWOP is a national filter plant optimization effort covering 23 states, the EPA, and the Association of State Drinking Water Administrators. The AWOP Award and Forest Park Water’s ongoing participation in the “Partnership for Safe Water”, a voluntary program administered by the American Water Works Association, demonstrates Forest Park Water’s continuing commitment to operational excellence.

To enhance water quality, NPWA performs an annual hydrant flushing program which takes place in the spring of each year. This flushing program helps improve water quality by removing any possible build-up of mineral deposits from the inside of water distribution pipes. NPWA also has an aggressive water main replacement program to improve the quality of water that we deliver to our customers. Old unlined cast iron mains, that can affect water quality and restrict flow, are replaced on a regular basis. These projects are scheduled when Penn DOT or our member municipalities are doing work on the roads to reduce inconvenience to the community.

In 2011, NPWA became the first water utility in Pennsylvania to join American Water Works Association’s (AWWA) Distribution System Optimization Program. This program is part of AWWA’s Partnership for Safe Water whose objective is to identify opportunities for improvement in system operations and to empower system operators with knowledge to recognize and apply procedures that result in water quality and system reliability improvements. NPWA’s participation in this voluntary program demonstrates our commitment to providing the best quality water to our customers.

PHONE: 215-855-3617 • www.npwa.org

Forest Park is a state of the art water treatment facility that combines conventional treatment processes with advanced techniques, which include ozone disinfection and membrane filtration. Membrane filtration is a leading-edge technology capable of consistently producing very high quality water and ensures that the plant can safely meet the more stringent federal and state water quality regulations that will be required in the near future. The combination of traditional and innovative water treatment allows Forest Park to produce the safest, highest quality water possible. In 2016, for the 9th consecutive year, Forest Park Water received the prestigious Area Wide Optimization Program (AWOP) Award presented by the PA DEP. The award recognizes outstanding efforts toward optimizing turbidity removal performance. AWOP is a national filter plant optimization effort covering 23 states, the EPA, and the Association of State Drinking Water Administrators. The AWOP Award and Forest Park Water’s ongoing participation in the “Partnership for Safe Water”, a voluntary program administered by the American Water Works Association, demonstrates Forest Park Water’s continuing commitment to operational excellence.

PHONE: 215-855-3617 • www.npwa.org
In 2013, a Source Water Assessment of the North Branch Neshaminy Creek tributary, which supplies water to the Forest Park Water Treatment Plant, was completed and prepared by Spratt, Stowers & Associates, Inc. for the NPWA. The Assessment found that the North Branch Neshaminy Creek tributary is potentially most susceptible to point sources of pollution from cut-and-fill operations, constructed wetland treatment plants, quarries, oil and gas extraction, urban floodplains, industrial parks, and roadways. The existing point sources include access roads to the forested areas, as well as access roads to the local community of entertainment and recreation. Any negative impacts from such sources are currently not being monitored. The construction plan and engineering response plans are in place to deal with any incidents of construction or accidents in such places that could impact the integrity of drinking water quality.

Summary reports of the Assessments are available on the Source Water Assessment Portal provided by the Safe Drinking Water Hotline at www.epa.gov/dw/View/Collection-10045. Complete reports were distributed to the NPWA customers, Salford Township and PA DCE officers. Copies of the complete reports are available for the PA EPA Regional Office, Remedies Management Office at (610)256-5910.

In 2005 by the PA DEP. The area around the well is primarily forested and agricultural/undeveloped land with moderate development. The Assessment found that the well was most susceptible to contamination from transportation corridors, agricultural and abandoned fields. Protected wells were at Roadside, Locust Creek, and Route 722. The assessment suggested that there is little threat from groundwater contaminations in the future. SOURCE WATER ASSESSMENT

In 2003, a Source Water Assessment of the North Branch Neshaminy Creek tributary, which supplies water to the Forest Park Water Treatment Plant, was completed and prepared by Spratt, Stowers & Associates, Inc. for the NPWA. The Assessment found that the North Branch Neshaminy Creek tributary is potentially most susceptible to point sources of pollution from cut-and-fill operations, constructed wetland treatment plants, quarries, oil and gas extraction, urban floodplains, industrial parks, and roadways. The existing point sources include access roads to the forested areas, as well as access roads to the local community of entertainment and recreation. Any negative impacts from such sources are currently not being monitored. The construction plan and engineering response plans are in place to deal with any incidents of construction or accidents in such places that could impact the integrity of drinking water quality.

Summary reports of the Assessments are available on the Source Water Assessment Portal provided by the Safe Drinking Water Hotline at www.epa.gov/dw/View/Collection-10045. Complete reports were distributed to the NPWA customers, Salford Township and PA DCE officers. Copies of the complete reports are available for the PA EPA Regional Office, Remedies Management Office at (610)256-5910.

In 2003, a Source Water Assessment of the North Branch Neshaminy Creek tributary, which supplies water to the Forest Park Water Treatment Plant, was completed and prepared by Spratt, Stowers & Associates, Inc. for the NPWA. The Assessment found that the North Branch Neshaminy Creek tributary is potentially most susceptible to point sources of pollution from cut-and-fill operations, constructed wetland treatment plants, quarries, oil and gas extraction, urban floodplains, industrial parks, and roadways. The existing point sources include access roads to the forested areas, as well as access roads to the local community of entertainment and recreation. Any negative impacts from such sources are currently not being monitored. The construction plan and engineering response plans are in place to deal with any incidents of construction or accidents in such places that could impact the integrity of drinking water quality.

Summary reports of the Assessments are available on the Source Water Assessment Portal provided by the Safe Drinking Water Hotline at www.epa.gov/dw/View/Collection-10045. Complete reports were distributed to the NPWA customers, Salford Township and PA DCE officers. Copies of the complete reports are available for the PA EPA Regional Office, Remedies Management Office at (610)256-5910.
CHEMICAL CONTAMINANTS

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Level Detected</th>
<th>Range of Detections</th>
<th>Units</th>
<th>Sample Date</th>
<th>Violation Yes/No</th>
<th>Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromate</td>
<td>10</td>
<td>0</td>
<td>3.8</td>
<td>1.8 – 3.8</td>
<td>ppb</td>
<td>2016</td>
<td>No</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
<tr>
<td>Chlorine (in distribution system)</td>
<td>MCL=4</td>
<td>MCLG=4</td>
<td>1.00</td>
<td>0.63 – 1.00</td>
<td>ppm</td>
<td>2016</td>
<td>No</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Arsenic</td>
<td>10</td>
<td>0</td>
<td>4 (T)</td>
<td>0 – 4</td>
<td>ppm</td>
<td>2015, 2016</td>
<td>No</td>
<td>Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes</td>
</tr>
<tr>
<td>Boron</td>
<td>2</td>
<td>2</td>
<td>0.095 (H)</td>
<td>0.062 – 0.128</td>
<td>ppm</td>
<td>2016</td>
<td>No</td>
<td>Discharge of drilling waste; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Chromium</td>
<td>100</td>
<td>100</td>
<td>2 (H)</td>
<td>0 – 2</td>
<td>ppm</td>
<td>2016</td>
<td>No</td>
<td>Discharge from steel and pulp mills; Erosion of natural deposits</td>
</tr>
<tr>
<td>Nickel</td>
<td>100</td>
<td>100</td>
<td>6.1 (H)</td>
<td>0 – 6.1</td>
<td>ppm</td>
<td>2013</td>
<td>No</td>
<td>Discharge of natural deposits; Byproduct of various industrial processes</td>
</tr>
<tr>
<td>Fluoride</td>
<td>2</td>
<td>2</td>
<td>0.148 (T)</td>
<td>0 – 0.21</td>
<td>ppb</td>
<td>2016</td>
<td>No</td>
<td>Runoff from fertilizer use; Feeding of septic tanks, sewage; Erosion of natural deposits</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>5</td>
<td>0</td>
<td>0.881 (H)</td>
<td>0 – 1</td>
<td>ppm</td>
<td>2015</td>
<td>No</td>
<td>Discharge from industrial chemical factories</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>70</td>
<td>70</td>
<td>4.06</td>
<td>0 – 4.0</td>
<td>ppb</td>
<td>2016</td>
<td>No</td>
<td>Discharge from industrial chemical factories</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>5</td>
<td>0</td>
<td>0.881</td>
<td>0 – 0.881</td>
<td>ppm</td>
<td>2015</td>
<td>No</td>
<td>Discharge from metal degrading sites and other factories</td>
</tr>
<tr>
<td>Tetrachlorofluoromethane</td>
<td>5</td>
<td>0</td>
<td>0.651</td>
<td>0 – 0.65</td>
<td>ppm</td>
<td>2016</td>
<td>No</td>
<td>Discharge from factories and dry cleaners</td>
</tr>
<tr>
<td>Chlorine (in water)</td>
<td>0.08</td>
<td>0.08</td>
<td>0.14 (T)</td>
<td>0 – 0.21</td>
<td>ppb</td>
<td>2016</td>
<td>No</td>
<td>Runoff from industrial chemical factories</td>
</tr>
<tr>
<td>Trihalomethanes (THMs)</td>
<td>*</td>
<td>*</td>
<td>0.071 (T)</td>
<td>0 – 0.71</td>
<td>ppm</td>
<td>2016</td>
<td>No</td>
<td>Runoff from industrial chemical factories</td>
</tr>
<tr>
<td>Fluoride</td>
<td>2</td>
<td>2</td>
<td>0.148 (T)</td>
<td>0 – 0.21</td>
<td>ppb</td>
<td>2016</td>
<td>No</td>
<td>Runoff from industrial chemical factories</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>70</td>
<td>70</td>
<td>4.06</td>
<td>0 – 4.0</td>
<td>ppb</td>
<td>2016</td>
<td>No</td>
<td>Discharge from industrial chemical factories</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>5</td>
<td>0</td>
<td>0.881</td>
<td>0 – 0.881</td>
<td>ppm</td>
<td>2015</td>
<td>No</td>
<td>Discharge from metal degrading sites and other factories</td>
</tr>
<tr>
<td>Tetrachlorofluoromethane</td>
<td>5</td>
<td>0</td>
<td>0.651</td>
<td>0 – 0.65</td>
<td>ppm</td>
<td>2016</td>
<td>No</td>
<td>Discharge from factories and dry cleaners</td>
</tr>
<tr>
<td>Alpha Emitters</td>
<td>15</td>
<td>0</td>
<td>6.17 (H)</td>
<td>0 – 6.17</td>
<td>µg/L</td>
<td>2012, 2014</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Combined Radium</td>
<td>5</td>
<td>0</td>
<td>0.4 (H)</td>
<td>0 – 0.4</td>
<td>µg/L</td>
<td>2012, 2014</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Uranium</td>
<td>30</td>
<td>0</td>
<td>7.30 (H)</td>
<td>0 – 7.30</td>
<td>µg/L</td>
<td>2012, 2014</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Haloacetic Acids (HAA5)</td>
<td>60</td>
<td>N/A</td>
<td>7.80*</td>
<td>2.49 – 14.1</td>
<td>ppb</td>
<td>2016</td>
<td>No</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
<tr>
<td>Total Trihalomethanes (THM6)</td>
<td>80</td>
<td>N/A</td>
<td>28.5*</td>
<td>6.93 – 50.4</td>
<td>ppb</td>
<td>2016</td>
<td>No</td>
<td>Byproduct of drinking water chlorination</td>
</tr>
</tbody>
</table>

* Since compliance is based on a running annual average, this value represents the highest running annual average result.

ENTRY POINT DISINFECTANT RESIDUAL

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Minimum Detectable Residual</th>
<th>Lowest Level Detected</th>
<th>Range of Detections</th>
<th>Units</th>
<th>Sample Date</th>
<th>Violation Yes/No</th>
<th>Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine – Wells</td>
<td>0.4</td>
<td>0.08 – 1.24</td>
<td>0.08 – 1.4</td>
<td>ppm</td>
<td>2015</td>
<td>No</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Chlorine – FPW</td>
<td>0.2</td>
<td>1.0 – 1.65 ppm</td>
<td>0.00 – 1.65 ppm</td>
<td>2016</td>
<td>No</td>
<td>Water additive used to control microbes</td>
<td></td>
</tr>
</tbody>
</table>

*Chlorine levels did not drop below the minimum residual level required for more than 4 hours.

TURBIDITY AT FOREST PARK WATER TREATMENT PLANT

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Level Detected</th>
<th>Range of Detections</th>
<th>Units</th>
<th>Sample Date</th>
<th>Violation Yes/No</th>
<th>Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>TT=1 NTU for a single measurement</td>
<td>0.04</td>
<td>0.01 – 0.04</td>
<td>ppm</td>
<td>2016</td>
<td>No</td>
<td>Soil run-off</td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>TT= or at least 95% of monthly</td>
<td>N/A</td>
<td>100%</td>
<td>N/A</td>
<td>2016</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Turbidity is a measure of the cloudiness of water. We monitor it because it is a good indicator of the effectiveness of our filtration system.

LEAD AND COPPER

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Action Level (AL)</th>
<th>90th Percentile Value</th>
<th>Units</th>
<th># of Sites Above AL</th>
<th>Total Sites</th>
<th>Sample Date</th>
<th>Violation Yes/No</th>
<th>Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>15</td>
<td>0.9</td>
<td>ppm</td>
<td>0 out of 31</td>
<td>31</td>
<td>2016</td>
<td>No</td>
<td>Corrosion of household plumbing</td>
</tr>
<tr>
<td>Copper</td>
<td>1.3</td>
<td>1.3</td>
<td>ppm</td>
<td>0 out of 31</td>
<td>31</td>
<td>2016</td>
<td>No</td>
<td>Corrosion of household plumbing</td>
</tr>
</tbody>
</table>

Perfluorinated Compounds (PFCs)

There are some contaminants for which the EPA develops health advisories, but has not yet established regulatory limits for compliance by public water suppliers. The health advisories provide technical information on health effects. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are included in those contaminants that have no regulatory limit but are associated with health advisory. Currently, PFOA and PFOS have a combined health advisory level (HAL) of 70 ppt. These chemicals are among a family of commonly used products that have been used for decades as key ingredients to make products that resist heat, oil, stains, grease and water, and are used in foam products for firefighting.

Due to recent health concerns in the region regarding PFOA and PFOS (PFCs), Forest Park Water Treatment Plant voluntarily elected to monitor water at the plant for PFCs.

FOREST PARK WATER TREATMENT PLANT

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Average Level Detected</th>
<th>Range of Detections</th>
<th>Units</th>
<th>Sample Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorooctanoic acid (PFOA)</td>
<td>0</td>
<td>0</td>
<td>ppb</td>
<td>2016</td>
</tr>
<tr>
<td>Perfluorooctane sulfonic acid (PFOS)</td>
<td>0.55</td>
<td>0 – 2.2</td>
<td>ppm</td>
<td>2016</td>
</tr>
<tr>
<td>PFOS + PFOA*</td>
<td>0.55</td>
<td>0 – 2.2</td>
<td>ppm</td>
<td>2016</td>
</tr>
</tbody>
</table>

*PFOA + PFOS have a combined HAL (Health Advisory Level) of 70 ppt